Les posteurs les plus actifs de la semaine
Aucun utilisateur |
Sujets les plus vus
coefficient de corrélation et P-value
3 participants
Page 1 sur 1
coefficient de corrélation et P-value
Bonsoir,
dans le cadre de mon mémoire j'ai réalisé un test statistique. Pour mettre en relation ma variable à expliquer et mes variables explicatives je me suis appuyé sur les indicateurs P-value et le coefficient de corrélation. Cependant pour certaines variables, les coefficients de corrélation varient entre entre - 0,2 et -0,08 alors que les P-values sont proches de zéro...
Si les P-values sont proches de zéro, pourquoi mes coeff r ne sont pas proches de 1 ou -1?
dans le cadre de mon mémoire j'ai réalisé un test statistique. Pour mettre en relation ma variable à expliquer et mes variables explicatives je me suis appuyé sur les indicateurs P-value et le coefficient de corrélation. Cependant pour certaines variables, les coefficients de corrélation varient entre entre - 0,2 et -0,08 alors que les P-values sont proches de zéro...
Si les P-values sont proches de zéro, pourquoi mes coeff r ne sont pas proches de 1 ou -1?
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Re: coefficient de corrélation et P-value
Bonsoir,
les p-values ne représentent pas la force de la liaison linéaire mais plutôt la confiance que tu peux avoir sur la valeur de cette dernière.
Si la corrélation est de -0.08 et que la p-value est proche de 0, tu as peu de chance que cette faible corrélation soit due au hasard, les variables sont réellement peu corrélées entre elles.
Niaboc
les p-values ne représentent pas la force de la liaison linéaire mais plutôt la confiance que tu peux avoir sur la valeur de cette dernière.
Si la corrélation est de -0.08 et que la p-value est proche de 0, tu as peu de chance que cette faible corrélation soit due au hasard, les variables sont réellement peu corrélées entre elles.
Niaboc
niaboc- Nombre de messages : 1001
Age : 37
Localisation : Paris
Date d'inscription : 05/05/2008
Re: coefficient de corrélation et P-value
Merci Niaboc de ta réponse. Mais je pensais que justement il y a avait une liaison grâce à la p-value et que la matrice de corrélation était une étape préalable avant d'effectuer les régressions...
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Re: coefficient de corrélation et P-value
cela signifie donc que mes variables qui présentent une corrélation de 0,2, la p-value étant proche de 0 confirme qu'elles ne sont pas liées?? je suis un perdu
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Re: coefficient de corrélation et P-value
Oui c'est ça.
Si tu as par exemple tu as une p-value de 0.01 sur tes corrélations de 0.2, cela signifie que tu avais 1 chance sur 100 de voir au moins cette valeur de corrélation (0.2) si les variables n'étaient pas du tout corrélées...
Niaboc
Si tu as par exemple tu as une p-value de 0.01 sur tes corrélations de 0.2, cela signifie que tu avais 1 chance sur 100 de voir au moins cette valeur de corrélation (0.2) si les variables n'étaient pas du tout corrélées...
Niaboc
niaboc- Nombre de messages : 1001
Age : 37
Localisation : Paris
Date d'inscription : 05/05/2008
Re: coefficient de corrélation et P-value
Si ma p-value était proche de 1 cela montrait donc qu'il y a 100 chances sur 100 de voir ce r?
Donc nous pouvons dire que les variables sont liées?
Je suis désolé de me répéter mais je veux être sûr de bien comprendre
Donc nous pouvons dire que les variables sont liées?
Je suis désolé de me répéter mais je veux être sûr de bien comprendre
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Re: coefficient de corrélation et P-value
Bonjour,
Ce qu'il faut voir c'est que le coefficient de corrélation que tu obtiens à partir de ton échantillon est une estimation du coefficient de corrélation de la population dont sont issus tes individus. Parmi une population de 1000 individus par exemple, si tu prends 100 personnes et que tu calcules le coef de corrélation tu auras une certaine valeur, si tu prends 100 autres personnes tu auras encore une autre valeur de coef de corrélation. Ces différences sont dues aux variabilités d'échantillonnage, au hasard. L'objectif de la p-value s'est de savoir si la valeur que tu observes pourrait être observée au hasard, en partant de l'hypothèse que dans ta population le coef de corrélation est de 0.
Cette p-value dépend bien sur de la valeur de la corrélation que tu as observé, mais aussi du nombre d'individus que contient ton échantillon. Pour la même valeur de coefficient, plus ton nombre d'individu augmente et plus la p-value va devenir petite. Pour autant le coef de corrélation n'a pas changé. C'est juste que plus tu as d'individus plus la mesure de la corrélation est précise, plus elle sera proche de celle de la population. Si parmi 1000 individus tu en prends 2 et que tu calcules le coef de corrélation, il y a peu de chance que tu sois proche de la corrélation de la population, par contre si tu en prends 999 alors la tu seras très proche de ce qui se passe dans la population (il ne te manque qu'un individu sur les 1000).
La force du lien entre tes variables c'est bien le coefficient de corrélation qui le mesure. Le niveau de significativité renvoyé par la p-value est juste une indication par rapport à 0.
cdlt
Je suis d'accord avec le début de la phrase mais pas totalement avec la fin. La p-value associée avec un coefficient de corrélation, est la probabilité qu'au hasard tu puisses avoir un coefficient de corrélation supérieur à celui que tu as observé en partant de l'hypothèse que dans ta population la corrélation est de 0.les p-values ne représentent pas la force de la liaison linéaire mais plutôt la confiance que tu peux avoir sur la valeur de cette dernière.
Ce qu'il faut voir c'est que le coefficient de corrélation que tu obtiens à partir de ton échantillon est une estimation du coefficient de corrélation de la population dont sont issus tes individus. Parmi une population de 1000 individus par exemple, si tu prends 100 personnes et que tu calcules le coef de corrélation tu auras une certaine valeur, si tu prends 100 autres personnes tu auras encore une autre valeur de coef de corrélation. Ces différences sont dues aux variabilités d'échantillonnage, au hasard. L'objectif de la p-value s'est de savoir si la valeur que tu observes pourrait être observée au hasard, en partant de l'hypothèse que dans ta population le coef de corrélation est de 0.
Cette p-value dépend bien sur de la valeur de la corrélation que tu as observé, mais aussi du nombre d'individus que contient ton échantillon. Pour la même valeur de coefficient, plus ton nombre d'individu augmente et plus la p-value va devenir petite. Pour autant le coef de corrélation n'a pas changé. C'est juste que plus tu as d'individus plus la mesure de la corrélation est précise, plus elle sera proche de celle de la population. Si parmi 1000 individus tu en prends 2 et que tu calcules le coef de corrélation, il y a peu de chance que tu sois proche de la corrélation de la population, par contre si tu en prends 999 alors la tu seras très proche de ce qui se passe dans la population (il ne te manque qu'un individu sur les 1000).
La force du lien entre tes variables c'est bien le coefficient de corrélation qui le mesure. Le niveau de significativité renvoyé par la p-value est juste une indication par rapport à 0.
cdlt
droopy- Nombre de messages : 1156
Date d'inscription : 04/09/2009
Re: coefficient de corrélation et P-value
Pierre.PP a écrit:Si ma p-value était proche de 1 cela montrait donc qu'il y a 100 chances sur 100 de voir ce r?
Donc nous pouvons dire que les variables sont liées?
Non pas du tout, une p-value proche de 1 signifie au contraire que la statistique testée n'est pas significativement différente de 0! (aucune corrélation)
niaboc- Nombre de messages : 1001
Age : 37
Localisation : Paris
Date d'inscription : 05/05/2008
Re: coefficient de corrélation et P-value
Par exemple nous voulons montrer qu'il existe une relation entre V1 et V2. Grâce à mon logiciel XLSTAT, il me montre que si V1 est la variable à expliquer et V2 la variable explicative il présente une p valeur proche de 0. Ceci montre t'il bien que les 2 variables présentent un lien quelconque malgré la faiblesse de r ?
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Re: coefficient de corrélation et P-value
Arfff il est frustrant de voir une de ses réponses qui n'a pas servi.
Si tu as une p-value proche de 0 ça veut dire qu'il y a très peu de chances que ton r soit égale à 0 dans ta population même si celui-ci est faible. Ça ne veut rien dire de plus que ça.
En plus il y a une confusion dans le dernier post. Tu parles de variables à expliquer et de variables explicatives, mais il n'est pas question de cette terminologie quand tu utilises un coefficient de corrélation. Avec un r tu cherches à quantifier un lien (linéaire) entre deux variables mais pas à expliquer une variable par rapport à une autre (c'est de la régression dans ces cas là).
cdlt
Si tu as une p-value proche de 0 ça veut dire qu'il y a très peu de chances que ton r soit égale à 0 dans ta population même si celui-ci est faible. Ça ne veut rien dire de plus que ça.
En plus il y a une confusion dans le dernier post. Tu parles de variables à expliquer et de variables explicatives, mais il n'est pas question de cette terminologie quand tu utilises un coefficient de corrélation. Avec un r tu cherches à quantifier un lien (linéaire) entre deux variables mais pas à expliquer une variable par rapport à une autre (c'est de la régression dans ces cas là).
cdlt
droopy- Nombre de messages : 1156
Date d'inscription : 04/09/2009
Re: coefficient de corrélation et P-value
MERCI beaucoup de votre aide, je voulais juste confirmer une dernière fois vos propos. Je suis novice en statistiques et mon tuteur a voulu que je m'amuse à faire des tests statistiques sans avoir des bases solides.
Pierre.PP- Nombre de messages : 8
Date d'inscription : 03/08/2017
Sujets similaires
» différence rapport de corrélation et coefficient corrélation
» coefficient de corrélation - coefficient de détermination
» Coefficient de correlation
» Coefficient de corrélation
» coéfficient de corrélation
» coefficient de corrélation - coefficient de détermination
» Coefficient de correlation
» Coefficient de corrélation
» coéfficient de corrélation
Page 1 sur 1
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum