Les posteurs les plus actifs de la semaine
Aucun utilisateur |
Sujets les plus vus
Savoir si la pente d'une régression linéaire est nulle
3 participants
Page 1 sur 1
Savoir si la pente d'une régression linéaire est nulle
Bonjour à tous,
J'ai une manip qui m'a donné une série de points.
J'ai effectué une régression linéaire sur ces points pour savoir s'il existait une dérive machine lors de ma manip' et donc si la régression linéaire avait une pente non différente de 0 statistiquement.
J'ai effectué la régression sous R et j'obtiens le résultat suivant :
Résultat machine :
summary(Regression)
Call:
lm(formula = Tableau3$Temps ~ Tableau3[, colonne_calcium3], data = Tableau3)
Residuals:
Min 1Q Median 3Q Max
-22.754 -12.063 -2.205 11.370 23.462
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.023e+02 6.834e+01 1.497 0.144
Tableau3[, colonne_calcium3] 5.000e-05 9.221e-05 0.542 0.591
Residual standard error: 14.43 on 33 degrees of freedom
Multiple R-squared: 0.008832, Adjusted R-squared: -0.0212
F-statistic: 0.294 on 1 and 33 DF, p-value: 0.5913
Mes 2 question sont les suivantes :
Merci beaucoup !!
Cha.
J'ai une manip qui m'a donné une série de points.
J'ai effectué une régression linéaire sur ces points pour savoir s'il existait une dérive machine lors de ma manip' et donc si la régression linéaire avait une pente non différente de 0 statistiquement.
J'ai effectué la régression sous R et j'obtiens le résultat suivant :
- Code:
Regression=lm(Tableau3$Temps~Tableau3[,colonne_calcium3], data=Tableau3)
summary(Regression)
Résultat machine :
summary(Regression)
Call:
lm(formula = Tableau3$Temps ~ Tableau3[, colonne_calcium3], data = Tableau3)
Residuals:
Min 1Q Median 3Q Max
-22.754 -12.063 -2.205 11.370 23.462
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.023e+02 6.834e+01 1.497 0.144
Tableau3[, colonne_calcium3] 5.000e-05 9.221e-05 0.542 0.591
Residual standard error: 14.43 on 33 degrees of freedom
Multiple R-squared: 0.008832, Adjusted R-squared: -0.0212
F-statistic: 0.294 on 1 and 33 DF, p-value: 0.5913
Mes 2 question sont les suivantes :
- Pour savoir si la pente est non nulle dois-je regarder le Pr(>|t|) du Tableau3[, colonne_calcium3] ou la p.value du test de F. ?
- Ils semblent similaires, pourquoi ?
Merci beaucoup !!
Cha.
Charlottesi- Nombre de messages : 14
Date d'inscription : 01/12/2012
Re: Savoir si la pente d'une régression linéaire est nulle
Bonjour,
le test de la pente a proprement dit est le Pr(>|t|). Le test F est le test de la variance, est-ce que la part de variance expliquée par le modèle est différente de 0.
Cordialement
le test de la pente a proprement dit est le Pr(>|t|). Le test F est le test de la variance, est-ce que la part de variance expliquée par le modèle est différente de 0.
Cordialement
droopy- Nombre de messages : 1156
Date d'inscription : 04/09/2009
Re: Savoir si la pente d'une régression linéaire est nulle
Merci beaucoup pour ces réponses.
Certaines choses restent encore floues pour moi:
En gros, si j'ai bien compris :
La valeur permettant de savoir si la pente est différente de 0 est le Pr(>|t|) de mes coefficients
Le F me permet de me dire si mon modèle est statistiquement valable.
Est-ce que jusque là j'ai bon ?
J'ai entendu parler du test du R², est ce que ce test ne serait pas le test F mentionné ci dessus ?
De plus si les valeur du p du test F et le Pr(>|t|) de mon coefficient directeur sont les même, n'est pas parce que mon modèle n'est qu'un modèle à un paramètre ?
Que pensez vous de tout cela ?
En tout les cas merci beaucoup, au moins je sais que je dois aller réviser mes stats
Certaines choses restent encore floues pour moi:
En gros, si j'ai bien compris :
La valeur permettant de savoir si la pente est différente de 0 est le Pr(>|t|) de mes coefficients
Le F me permet de me dire si mon modèle est statistiquement valable.
Est-ce que jusque là j'ai bon ?
J'ai entendu parler du test du R², est ce que ce test ne serait pas le test F mentionné ci dessus ?
De plus si les valeur du p du test F et le Pr(>|t|) de mon coefficient directeur sont les même, n'est pas parce que mon modèle n'est qu'un modèle à un paramètre ?
Que pensez vous de tout cela ?
En tout les cas merci beaucoup, au moins je sais que je dois aller réviser mes stats
Charlottesi- Nombre de messages : 14
Date d'inscription : 01/12/2012
Re: Savoir si la pente d'une régression linéaire est nulle
OuiLa valeur permettant de savoir si la pente est différente de 0 est le Pr(>|t|) de mes coefficients
Si la part de variance expliquée par tes variables indépendantes est significative ou non (H0 : variance expliquée = 0 ou encore R² = 0)Le F me permet de me dire si mon modèle est statistiquement valable.
OuiJ'ai entendu parler du test du R², est ce que ce test ne serait pas le test F mentionné ci dessus ?
OuiDe plus si les valeur du p du test F et le Pr(>|t|) de mon coefficient directeur sont les même, n'est pas parce que mon modèle n'est qu'un modèle à un paramètre ?
droopy- Nombre de messages : 1156
Date d'inscription : 04/09/2009
Re: Savoir si la pente d'une régression linéaire est nulle
Bonjour,
Dans le cas d'une régression linéaire simple (une seule VD et une seule VI), l'hypothèse nulle "pas d'effet linéaire de la VI sur la VD" peut s'exprimer par différents paramètres :
coefficient de détermination nul
coefficient de régression nul
coefficient de corrélation nul
Cette hypothèse peut donc être testée via une statistique F, ou une statistique de Student, ou encore une statistique relative à la corrélation.
Quelle que soit donc la statistique utilisée, c'est en fait la même hypothèse qui est testée. En conséquence, la valeur p ("plausibilité" de l'hypothèse nulle) se retrouvera identique en face du test F, et du test relatif au coefficient de régression, et du coefficient de corrélation.
Pour rappel, ceci n'est vrai que dans le cas d'une régression simple, y compris dans le cas où l'unique VI est une variable binaire (codant une variable qualitative dichotomique).
A+
Dans le cas d'une régression linéaire simple (une seule VD et une seule VI), l'hypothèse nulle "pas d'effet linéaire de la VI sur la VD" peut s'exprimer par différents paramètres :
coefficient de détermination nul
coefficient de régression nul
coefficient de corrélation nul
Cette hypothèse peut donc être testée via une statistique F, ou une statistique de Student, ou encore une statistique relative à la corrélation.
Quelle que soit donc la statistique utilisée, c'est en fait la même hypothèse qui est testée. En conséquence, la valeur p ("plausibilité" de l'hypothèse nulle) se retrouvera identique en face du test F, et du test relatif au coefficient de régression, et du coefficient de corrélation.
Pour rappel, ceci n'est vrai que dans le cas d'une régression simple, y compris dans le cas où l'unique VI est une variable binaire (codant une variable qualitative dichotomique).
A+
sadek- Nombre de messages : 9
Date d'inscription : 18/11/2012
Re: Savoir si la pente d'une régression linéaire est nulle
Super, un grand merci à tous les 2 pour ces réponses.
Sadek, je vais me pencher sur ces 3 coefficients et si j'ai un problème je te recontacterai ultérieurement.
En tous les cas merci infiniment pour votre aide !!
A bientôt
Cha.
Sadek, je vais me pencher sur ces 3 coefficients et si j'ai un problème je te recontacterai ultérieurement.
En tous les cas merci infiniment pour votre aide !!
A bientôt
Cha.
Charlottesi- Nombre de messages : 14
Date d'inscription : 01/12/2012
Sujets similaires
» Comparer résultats régression linéaire et non linéaire
» Régression Logistique vs Régression Linéaire
» test statistique sur des courbes
» régression non-linéaire
» Regression non linéaire
» Régression Logistique vs Régression Linéaire
» test statistique sur des courbes
» régression non-linéaire
» Regression non linéaire
Page 1 sur 1
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum