Forum de Statistiques
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Les posteurs les plus actifs de la semaine
Aucun utilisateur

Le deal à ne pas rater :
Demon Slayer – Coffret (T19 + Roman N°02) en Précommande sur ...
15.99 €
Voir le deal

valeurs extrêmes sur la loi de Gumbel

2 participants

Aller en bas

valeurs extrêmes sur la loi de Gumbel Empty valeurs extrêmes sur la loi de Gumbel

Message par AdrienC Jeu 27 Aoû 2020 - 7:14

Bonjour,

Je travaille actuellement sur une variable X qui est distribuée entre 0 et 1. Visuellement, on dirait une gaussienne avec une queue très lourde sur [0.5,1]. J'ai donc décidé de modéliser cette distribution par une loi de Gumbel (j'estime ses paramètres à partir du maximum de vraisemblance).

Ensuite vient le vrai problème : je dois déterminer les individus qui sont dans cette "queue" : ce sont des valeurs extrêmes - outliers, si X suivait une loi normale : cela peut très bien représenter 10% de l'ensemble des données.

Pour notre étude, il est très important de savoir quelles sont les données dans la queue car elles représentent un certain phénomène biologique. Bien entendu, il faut déterminer un seuil entre les individus "normaux" qui se comportent comme une loi normale, et les "atypiques" qui sont dans la queue de la distribution.

J'ai quelques difficultés à voir comment déterminer cette frontière : à partir "d'où" commence la queue de X.

Très bonne journée à vous

Adrien
AdrienC
AdrienC

Nombre de messages : 93
Date d'inscription : 15/03/2018

Revenir en haut Aller en bas

valeurs extrêmes sur la loi de Gumbel Empty Re: valeurs extrêmes sur la loi de Gumbel

Message par Florent Aubry Jeu 10 Sep 2020 - 11:39

Si ta variable X est distribuée entre 0 et 1 par nature, donc à support fini, alors prendre une gaussienne comme distribution de référence pour chercher des outliers n'est pas la solution. Cherche du côté des lois à support fini comme les lois beta, logit-normale...
De plus, si ton échantillon est composé de deux populations distinctes, rien ne te dit que l'apparente 'queue lourde' n'est pas simplement un second groupe et que ce que tu visualises n'est pas simplement un effet de mélange de deux distributions.

Je pense que ton problème manque d'une spécification précise.

Florent Aubry

Nombre de messages : 251
Date d'inscription : 02/11/2015

Revenir en haut Aller en bas

Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum