Les posteurs les plus actifs de la semaine
zezima
 
poetschevleesch
 
Stanlgn
 
jb6546
 
gg
 
c@ssoulet
 
FMarwen
 
EternalSunshine
 
MaxenceR
 


GLM : p-value et odd ratio

Aller en bas

GLM : p-value et odd ratio

Message par lenny868 le Mer 5 Sep - 14:20

Bonjour,

J'ai une question à propos d'une p-value non-significative (Type) mais d'un odd ratio non égal à 1 (1.529). Je croyais que pour les p-value non significative , l'odd ratio est égal à 1. Puisque ce ratio traduit la chance d'avoir un "yes" par unité de valeur de "type".
Si c'est égale a 1.52, cela veut dure que pour chaque "type" supplémentaire, j'aurais 0.52 de chance d'avoir un 'yes' en plus, n'est ce pas ?

Merci de m'éclairer un peu plus sur ce point.

Code:
res=structure(list(Times = structure(c(1L, 1L, 3L, 3L, 5L, 1L, 1L,
2L, 4L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 1L, 3L, 3L, 3L,
4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 1L, 1L, 1L, 1L, 3L,
4L, 5L, 5L, 1L, 4L, 2L, 1L, 1L, 4L, 1L, 4L, 4L, 1L, 5L, 3L, 1L,
1L, 1L, 4L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 4L, 5L, 1L, 4L, 4L, 3L,
3L, 1L, 4L, 1L, 1L, 2L, 4L, 3L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 2L,
1L, 1L, 6L, 3L, 1L, 4L, 1L, 1L, 1L, 1L, 4L, 3L, 1L, 1L, 4L, 3L,
4L, 2L, 4L, 1L, 2L, 2L, 5L, 6L, 2L, 4L, 3L, 6L, 4L, 5L, 2L, 3L,
1L, 4L, 5L, 1L, 3L, 3L, 1L, 6L, 1L, 2L, 1L, 2L, 6L, 3L, 1L, 1L,
5L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 4L, 5L, 2L, 3L, 5L, 1L, 1L,
1L, 2L, 2L, 2L, 5L, 1L, 6L, 1L, 2L, 1L, 4L, 3L, 2L, 3L, 3L, 2L,
4L, 1L, 2L, 4L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 3L, 4L, 3L, 2L, 2L, 1L, 1L, 2L, 3L, 1L,
1L, 2L, 2L, 3L, 5L, 3L, 1L, 1L, 1L, 3L, 2L, 6L, 4L, 2L, 6L, 2L,
3L, 4L, 1L, 1L, 1L, 2L, 2L, 6L, 2L, 2L, 1L, 2L, 2L, 3L, 2L, 1L,
1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 2L, 2L, 4L, 4L, 2L,
2L, 4L, 3L, 1L, 3L, 3L, 3L, 3L, 4L, 2L, 6L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 3L, 3L, 2L, 3L, 2L, 5L, 2L, 2L, 1L, 2L, 2L, 3L, 2L, 3L,
2L, 1L, 1L, 1L, 1L, 5L, 4L, 4L, 1L, 1L, 2L, 2L, 3L, 3L, 5L, 2L,
4L, 6L, 2L, 2L, 5L, 3L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L,
1L, 2L, 2L, 2L, 3L, 3L, 6L, 2L, 3L, 2L, 3L, 1L, 1L, 1L, 3L, 3L,
3L, 1L, 4L, 6L, 6L, 2L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 4L, 2L, 2L,
2L, 2L, 1L, 3L, 1L, 3L, 6L, 3L, 2L, 1L, 3L, 2L, 3L, 2L, 2L, 4L,
1L, 4L, 3L, 3L, 3L, 3L, 6L, 6L, 2L, 2L, 3L, 2L, 3L, 3L, 2L, 2L,
1L, 3L, 4L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 2L, 1L, 5L, 5L, 2L, 1L,
2L, 2L, 3L, 6L, 3L, 2L, 4L, 2L, 2L, 5L, 2L, 3L, 3L, 5L, 4L, 3L,
1L, 5L, 4L, 3L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 3L, 2L, 6L,
5L, 3L, 5L, 3L, 3L, 2L, 5L, 5L, 3L, 2L, 3L, 2L, 2L, 3L, 3L, 2L,
1L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 1L, 3L, 3L, 2L, 4L, 3L, 2L,
2L, 3L, 2L, 2L, 1L, 2L, 3L, 6L, 5L, 3L, 3L, 2L, 2L, 2L, 3L, 3L,
5L, 3L, 3L, 2L, 3L, 3L, 2L, 5L, 5L, 3L, 4L, 2L, 3L, 3L, 2L, 2L,
2L, 3L, 3L, 1L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 1L, 3L,
2L, 5L, 3L, 3L, 4L, 2L, 3L, 2L, 4L, 3L, 3L, 2L, 3L, 4L, 2L, 2L,
2L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 3L, 3L, 2L, 4L, 2L, 2L, 6L,
3L, 2L, 2L, 5L, 2L, 2L, 1L, 4L, 3L, 2L), .Label = c("(0,10]",
"(10,20]", "(20,30]", "(30,40]", "(40,50]", "(50,60]"), class = "factor"),
    Age = c(27, 18, 38, 16, 50, 30, 26, 65, 28, 25, 57, 26, 28,
    53, 26, 21, 21, 25, 55, 16, 59, 22, 45, 19, 40, 10, 54, 51,
    30, 20, 22, 22, 37, 39, 50, 35, 20, 44, 26, 32, 20, 26, 56,
    36, 31, 30, 38, 58, 40, 58, 53, 34, 48, 55, 27, 48, 47, 16,
    29, 45, 19, 49, 48, 34, 26, 52, 39, 30, 39, 21, 19, 34, 39,
    62, 63, 21, 50, 43, 50, 25, 54, 55, 42, 43, 29, 26, 43, 37,
    25, 31, 21, 23, 30, 30, 55, 18, 45, 28, 51, 43, 15, 18, 39,
    52, 52, 36, 20, 52, 64, 52, 42, 45, 17, 19, 29, 60, 55, 48,
    43, 67, 58, 26, 34, 56, 62, 36, 32, 51, 30, 54, 56, 60, 49,
    50, 40, 51, 28, 59, 35, 20, 53, 35, 54, 27, 22, 46, 33, 33,
    41, 34, 42, 39, 46, 58, 25, 58, 33, 28, 39, 22, 25, 59, 49,
    50, 46, 54, 37, 20, 50, 22, 32, 30, 25, 25, 60, 26, 55, 44,
    53, 19, 29, 36, 28, 54, 56, 48, 35, 39, 28, 37, 41, 22, 54,
    50, 57, 56, 40, 22, 34, 21, 14, 35, 65, 54, 42, 38, 14, 28,
    55, 64, 46, 37, 39, 45, 42, 20, 20, 35, 17, 46, 20, 19, 45,
    55, 28, 33, 45, 52, 42, 30, 37, 33, 18, 56, 36, 60, 50, 47,
    27, 22, 25, 19, 51, 24, 55, 32, 60, 19, 50, 44, 41, 45, 46,
    28, 56, 25, 51, 30, 46, 32, 19, 37, 39, 60, 18, 28, 45, 58,
    29, 22, 50, 17, 33, 26, 28, 31, 23, 49, 52, 22, 30, 37, 33,
    32, 33, 45, 29, 22, 27, 37, 17, 24, 30, 40, 18, 54, 49, 41,
    47, 44, 53, 48, 40, 20, 21, 54, 23, 22, 31, 41, 47, 36, 22,
    51, 27, 30, 50, 56, 44, 38, 43, 54, 52, 42, 59, 43, 38, 57,
    20, 50, 25, 25, 25, 30, 39, 33, 50, 39, 49, 53, 57, 74, 48,
    35, 51, 53, 41, 27, 18, 28, 30, 27, 33, 59, 25, 39, 37, 52,
    47, 56, 30, 53, 64, 47, 55, 50, 55, 47, 45, 56, 26, 27, 31,
    28, 39, 61, 50, 54, 22, 54, 40, 40, 44, 40, 31, 55, 38, 51,
    28, 35, 33, 25, 41, 35, 53, 29, 27, 33, 35, 39, 47, 42, 20,
    34, 56, 41, 55, 53, 53, 25, 56, 57, 53, 18, 57, 58, 57, 38,
    44, 22, 50, 32, 59, 47, 50, 44, 50, 43, 24, 45, 53, 52, 18,
    45, 27, 30, 55, 31, 39, 50, 45, 45, 50, 43, 39, 48, 22, 39,
    41, 34, 39, 52, 53, 53, 31, 35, 62, 53, 60, 41, 30, 23, 42,
    56, 43, 35, 56, 34, 56, 38, 41, 52, 62, 30, 51, 44, 54, 24,
    53, 47, 42, 43, 57, 18, 62, 40, 37, 36, 52, 41, 42, 48, 41,
    33, 26, 43, 37, 33, 26, 32, 42, 31, 18, 26, 20, 43, 35, 33,
    38, 50, 37, 42, 35, 52, 43, 35, 50, 37, 30, 49, 46, 54, 29,
    38, 54, 27, 57, 52, 26, 23, 36, 56, 38, 50, 59, 19, 42, 18,
    22, 22, 22, 24, 23, 37, 40), Type = c("NON", "OUI", "OUI",
    "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "NON", "OUI",
    "OUI", "OUI", "OUI", "OUI", "NON", "NON", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "NON", "OUI",
    "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI",
    "OUI", "OUI", "NON", "OUI", "NON", "OUI", "OUI", "OUI", "OUI",
    "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "NON", "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "NON", "OUI",
    "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "NON", "NON", "NON", "NON", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "NON", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI",
    "NON", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "NON", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "NON", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "NON", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "OUI",
    "OUI", "OUI", "OUI", "OUI", "OUI", "OUI", "NON", "OUI", "OUI",
    "OUI", "OUI"), No = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L,
    0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L,
    1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L,
    1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L,
    1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L,
    1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L), Yes = c(0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L,
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
    1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
    0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
    0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
    0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
    1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L,
    0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
    0L, 1L, 1L, 0L)), .Names = c("Times", "Age", "Type", "No",
"Yes"), row.names = c(NA, -545L), class = "data.frame")

attach(res)
model1=glm(Yes ~ Age + Times + Type, family=binomial)
summary(model1)
exp(model1$coefficients)

lenny868

Nombre de messages : 42
Date d'inscription : 16/01/2018

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: GLM : p-value et odd ratio

Message par zezima le Mer 5 Sep - 15:00

Bonjour, il faut prendre en compte les intervalles de confiance de l'Odds.
Si l'Odds ne contient pas 1 alors le résultat est "significatif".

Si l'Odds est significatif, tu peux dire que tu auras théoriquement 1.52 fois plus de "yes"dans le type supplémentaire.
N'hésite pas à faire un table() entre tes variables pour savoir dans quel sens s'interprète ton Odds.
Là il n'est pas significatif donc on n'interprète pas l'Odds.
avatar
zezima

Nombre de messages : 816
Date d'inscription : 26/02/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: GLM : p-value et odd ratio

Message par droopy le Jeu 6 Sep - 8:57

Bonjour,
pour compléter la réponse de zezima tu peux taper confint(model1) et tu auras l'intervalle de confiance de coefficient du coefficient et comme tu vois que 0 appartient a cet intervalle alors 1 est compris dans l'intervalle de confiance de l'odds ratio. N'oublie pas que ton coefficient est une estimation de ce qui se passe dans la population, donc qu'il possède une variance.
cdlt
avatar
droopy

Nombre de messages : 1109
Date d'inscription : 04/09/2009

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: GLM : p-value et odd ratio

Message par Contenu sponsorisé


Contenu sponsorisé


Revenir en haut Aller en bas

Revenir en haut

- Sujets similaires

 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum