Les posteurs les plus actifs de la semaine
Volivoile
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
Eric Wajnberg
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
Schwarzlowe
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
droopy
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
Jeric
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
mimran
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
hipgl
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 
gtoubonstras
intervalle - Intervalle de confiance de la moyenne d'une population Vote_lcapintervalle - Intervalle de confiance de la moyenne d'une population Voting_barintervalle - Intervalle de confiance de la moyenne d'une population Vote_rcap 


Intervalle de confiance de la moyenne d'une population

Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Intervalle de confiance de la moyenne d'une population

Message par kekeum le Jeu 15 Oct 2009 - 8:38

Bonjour,

Je n'arrive pas à comprendre le passage d'une étape à l'autre dans le calcul classique de l'IC de la moyenne d'une population. On encadre classiquement la VA centrée réduite (Xbarre-mu)/(sigma/racine(n))) entre deux bornes (dépendantes de plusieurs paramètres) telles que -1.96 et 1.96 dans le cas d'une loi N. Puis on encadre mu par cuisine mathématique. Alors que je comprends sans problème qu'il s'agit d'une variable aléatoire décrivant la moyenne des échantillons dans la formule ci-dessus (d'où le "Xbarre" majuscule), je ne comprends pas la logique qui conduit ensuite à lui faire prendre la valeur de la moyenne de l'échantillon, c'est à dire xbarre (minuscule), en tous cas dans mon esprit. Si quelqu'un pouvait m'éclairer, ce serait super chouette.
Un grand merci,
Bonne journée,
Franck

kekeum

Nombre de messages : 3
Date d'inscription : 15/10/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par droopy le Jeu 15 Oct 2009 - 9:34

ça vient de deux choses :

1) Le Xbarre représente une variable aléatoire
2) xbarre est la moyenne de ton échantillon.

Admettons que tu as une population de 1000 individus, si tu prends un premier échantillon de 100 individus et que tu calcules sa moyenne m1, tu auras une estimation de la moyenne de la population. Après tu peux aussi refaire ça avec un deuxième échantillon de 100 individus et tu calcules sa moyenne m2, tu auras une autre estimation de la moyenne de la population. Et si tu refais ça un grand nombre de fois tu auras un grand nombre de moyenne. Xbarre est la variable aléatoire qui représente ces moyennes.

Un exemple avec une population de 1000 individus :
Code:
# la population :
set.seed(1040)
X <- rnorm(1000,50,10)
# sa moyenne :
mu <- mean(X)
49.90686

Maintenant si je prends 1000 échantillons différents de 100 individus et que pour chaque échantillon je calcule la moyenne j'aurai une distribution des moyennes de mes échantillons : Xbarre.
Code:
Xbarre <- replicate(1000,{
auxi <- sample(1000,100)
moyenne <- mean(X[auxi])
})
hist(Xbarre)
On voit bien que Xbarre suit une loi normale. Si on regarde les quartiles de cette distribution :
Code:
summary(Xbarre)
 Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  46.43  49.25  49.89  49.87  50.46  53.07
On voit bien que la moyenne que l'on peut calculer pour un échantillon donnée est quelle que chose de variable puisqu'ici elle varie entre 46.43 et 53.07 avec une médiane autour de 49.87. Donc suivant l'échantillon que tu as l'estimation de la moyenne de la population sera différente.

Dans la pratique on a qu'un seul échantillon de cette population, pour lequel on calcule la moyenne et l'écart-type :
Code:
auxi <- sample(1000,100)
x <- X[auxi]
xbarre <- mean(x)
s <- sd(x)

Ici xbarre vaut 49.87049 et s vaut 9.325747. Le but étant de pouvoir tirer des informations sur la population à partir de cet échantillon.

Si on regarde le lien entre notre échantillon et la variable aléatoire Xbarre, on voit que l'écart type de Xbarre (0.9359672) est équivalent à s/racine(n) = s/10 = 0.9325747.

D'un point de vue théorique tu sais effectivement que (Xbarre-mu)/(sigma/racine(n))) est comprise dans un certain intervalle, et pour pouvoir estimer cet intervalle on va se servir des valeurs calculées sur notre échantillon pour estimer les paramètres de la variable aléatoire Xbarre. Tu vas donc considérer que la moyenne de Xbarre c'est la moyenne de ton échantillon (xbarre) et que son écart type c'est le s/racine(n) de ton échantillon.

Moralité Xbarre est une variable aléatoire des moyennes de tes échantillons (de même dimension ici 100 individus) et xbarre est la moyenne d'un seul des échantillons (celui que tu auras en pratique).

Est-ce que c'est plus claire maintenant ?
droopy
droopy

Nombre de messages : 1132
Date d'inscription : 04/09/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par kekeum le Jeu 15 Oct 2009 - 14:13

Bonjour Droopy,

Franchement, personne ne m'avait expliqué avec autant de pédagogie la fluctuation d'échantillonnage; je te remercie énormément d'avoir répondu aussi vite de façon aussi complète.
La toute dernière partie reste encore floue pour moi... Je ne comprends toujours pas la logique qui consiste, dans l'enchainement de la cuisine mathématique qui va de P(-1.96<(Xbarre-mu)/(sigma/racine(n)))<1.96)=0.95 à l'IC proprement dit (et donc à l'encadrement de mu), à transformer Xbarre, donc un concept de quelque chose qui varie, qui peut prendre plusieurs valeurs, en xbarre, c'est à dire en un paramètre fixe. A quel moment cela a lieu??! Même si je conçois sans problème que xbarre n'est pas n'importe quel paramètre, et qu'il représente l'espérance de Xbarre (enfin je crois qu'on l'exprime plus ou moins comme ça), l'étape de tarnsition entre ces deux concepts m'échappe totalement.... aie aie aie.... dur dur là.
Franck

kekeum

Nombre de messages : 3
Date d'inscription : 15/10/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par droopy le Jeu 15 Oct 2009 - 14:24

En fait en pratique on va estimer l'espérence de Xbarre (espéreance de la moyenne des moyennes) par xbarre (moyenne de l'échantillon) parce que c'est la seule estimation que l'on a de la "vraie" moyenne (mu) de la population.

Regarde ici :
http://biol09.biol.umontreal.ca/BIO2041e/Sujet_05-Int_confiance.pdf

tu auras plus de détail, notamment à la page 6.
droopy
droopy

Nombre de messages : 1132
Date d'inscription : 04/09/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par kekeum le Jeu 15 Oct 2009 - 15:33

J'ai pourtant bien regardé ce cours (super bien fait!), mais ça reste trouble pour moi... je ne dois pas prendre les choses du bon côté; je vais tenter de souffler un peu et de m'y remettre! merci en tous cas mille fois.
Franck

kekeum

Nombre de messages : 3
Date d'inscription : 15/10/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par droopy le Jeu 15 Oct 2009 - 16:26

Tu passes de la variable aléatoire à l'espérance de cette variable qui est la moyenne estimée de ton échantillon.
droopy
droopy

Nombre de messages : 1132
Date d'inscription : 04/09/2009

Revenir en haut Aller en bas

intervalle - Intervalle de confiance de la moyenne d'une population Empty Re: Intervalle de confiance de la moyenne d'une population

Message par Contenu sponsorisé


Contenu sponsorisé


Revenir en haut Aller en bas

Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum